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Volumetric Properties of Fluids Calculated by 
Renormalization-Group Theory I 

J. A. White 2 

A renormalization-group theory has been developed recently with which to 
calculate thermal properties of fluids throughout an extended neighborhood of 
their gas liquid critical point. In tests perfbrmed to date, the theory has proved 
capable of predicting volumetric properties to ~ I°,~, accuracy I lbr pressures 
near the critical point and densities elsewhere] for several different fluids when 
applied in a very simple approximation that requires adjustment of at most 
three constants. Rest, Its are presented for these initial investigations. Com- 
parison is made both with experimental data and with predictions of simple 
microscopic models of the underlying intennolecular Ibrces. 

KEY WORDS: global renormalization group; supercritical Iluid: volumetric 
properties. 

1. INTRODUCTION 

An effort has been made recently [ 1-3] to develop a global renormal- 
ization-group theory of fluids together with an approximation scheme 
for carrying through practical calculations to make it possible to predict 
thermal behavior of fluids to improved accuracy when information from 
experiments is lacking or very limited. One goal is to be able ultimately 
to make predictions accurately from a knowledge of underlying inter- 
molecular interactions. Some progress in that direction will be reported 
here. Another objective is to make predictions over large ranges of density 
and temperature when data from experiments is limited to small portions 
of those ranges. Progress in this area will be illustrated below by some 
examples of the accuracy currently attainable from a knowledge of just one, 
two, or three appropriately chosen (P, IJ; T) data points. 
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A renormalization-group approach was chosen in formulating the 
theory so that contributions to the free energy that come from spontaneous 
fluctuations of density within the fluid should be correctly taken into 
account. A proper accounting of the density fluctuations is essential for any 
accurate, fundamental theory of behavior near the critical point: it is well 
known to be needed there to understand the nonanalytic behavior of ther- 
modynamic functions, the nonclassical values of critical point exponents, 
etc. But even at quite large distances from the critical point, for example, 
at critical temperature, but 50% greater than critical density, the non- 
mean-field behavior of the fluctuations has been found to account for a 
large portion of some measured quantities, e.g., the pressure [4].  

There is thus, from a fundamental point of view, a need to consider 
fluctuations properly, including when considering nonuniversal properties 
such as the pressure, temperature, and density measured at the critical 
point and also when not especially close to the critical point. Until quite 
recently, however, it appears not to have been possible to use existing 
renormalization-group ideas directly to treat properties of fluids, or of the 
many other systems that have second-order phase transitions (critical 
points), except for some universal behaviors that are observed in a quite 
small neighborhood about the critical point. The theory used in the present 
investigation is a generalization of earlier renormalization treatments to 
include nonuniversal aspects of the fluctuations and to take into account 
their contributions even when not close to the critical point. A mathemati- 
cal discussion of the extensions of earlier renormalization treatments has 
been given elsewhere [3] .  In particular, Section III.B in Ref. 3 is of especial 
importance for the work reported here. 

2. RESULTS. COMPARISONS WITH EXPERIMENTS 

The investigations reported here used the renormalization theory of 
fluids evaluated in the phase-space cell approximation as described in 
Ref. 3. As discussed more fully there, the renormalization-group calcula- 
tions were applied to the attractive part of the intermolecular potential, 
assumed to be pure two-body attraction. The repulsive part of the potential 
was treated in the Carnahan-Starling hard-sphere approximation, with 
temperature- (but not density-) dependent sphere volume. In some of the 
work to be discussed, one hard-sphere high virial coefficient (in different 
gases, the 8th or the 12th) was artificially enhanced to give improved agree- 
ment with pressures measured at densities more than approximately 70% 
above critical. 

Figure 1 illustrates results obtained for 3He. The symbols are 
experimental data obtained by Wallace and Meyer [ 5 ]. The solid lines were 
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calculated by adjusting just two constants in the theory. The first constant, 
the "cohesion volume" c [see Eq. (15a) in Ref. 3], was adjusted to make 
the calculated critical point match that determined experimentally. The 
second constant, l,"j, the temperature coefficient of the hard-sphere "core" 
volume [see Eq. (18) in Ref. 3], was adjusted to bring theory into agree- 
ment with one pressure-density data point at a temperature different from 
critical. (For 3He, no adjustment was made in any of the hard-sphere high 
virial coefficients.) Overall agreement is seen to be rather good over the 
range of densities and temperatures shown. Existing data do not extend to 
high enough temperatures to establish whether the temperature exponent 
for the core volume should be -0 .25,  as used in Ref. 3 and employed 
for Fig. I, or a larger (absolute) value, more characteristic of quantum 
behavior. (The de Broglie wavelength for 3He at its critical point is 5.5 A, 
which is comparable to the average separation between ~He atoms at the 
critical point density of 1 atom per 121 A3.) It is to be noted that the hard- 
sphere temperature coefficient required for 3He was exceptionally large (see 
Table I). If this temperature dependence was ignored, and the spheres 
treated as constant in diameter ( V~ = 0), then agreement with experiment 
worsened quite conspicuously at the temperatures farthest from critical, but 
not noticeably for the isotherm closest to critical. (Precisely a t  the critical 
point temperature, of course, I,'j had no effect at all; the entire critical 
temperature isotherm was determined after a choice had been made for the 
single fitting constant, c =  cohension volume. 
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Fig. 1. Pressure isotherms lbr SHe. Experimental data 
are from Ref. 5. Temperatures (from top to bottom) 
T r = 1.0402. 0.9999. 0.9666. 0.9197. 
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For hydrogen (H2), a more extensive set of volumetric data was 
available [6].  Adjusting just tile single constant c =  cohesion volume in tile 
theory resulted in good agreement for temperatures within a few percent of 
critical and densities out to about 170% of critical. Adjusting the second 
constant, I" I, thereby giving a temperature dependence to the repulsive 
core of the molecules, improved the agreement farther from the critical 
temperature, but did not eliminate the disagreement fbr densities greater 
than about 170 % of critical. Therefore, for H, ,  a third fitting constant was 
introduced, as had been done for n-pentane [3] .  For H_,, slightly better 
agreement was obtained by enhancing the 8th virial coefficient, I'.~, rather 
than the 12th, l'~_,, as was done for pentane [see Eq. (17) in Ref 3]. The 
numerical value I's = 0.094 was determined by the requirement that there 
be good agreement with one P I T  data point for H,  that had been 
measured at near critical temperature and a density somewhat greater than 
twice that at the critical point. 

The overall agreement with measured volumetric properties of H,  
obtained in this way, by adjusting the three constants c, I'~. and l 's, is seen 
in Fig. 2 to be similar to that for ~He (Fig. I), but now extends con- 
siderably farther in temperature and density, well outside the range of 
experimental data that were available for SHe. The numerical value used 
for I'~ differed greatly from that for SHe (see Table 1). The de Broglie 
wavelength (2.1 A) for H,  at its critical point temperature is considerably 
smaller than that for SHe, which has a much lower critical temperature. 
Also, it may be noted that, though the compressibility ratio Z~. = P~ I'~./RT¢ 
at the critical point is nearly the same for SHe and U 2,  the Pitzer "acentric'" 
factors are rather different (Table I). [The acentric factor is defined as 
( o = l o g , . ( P J P , ) - 1 ,  where P,  is the wlpor pressure at T=0.7T~.]  Other 
comparisons listed in Table l include the ratio of cohesion volume c to 
repulsive core volume at the critical point temperature, Ii~, normalized (via 
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the factor 4.66l to unity for 3He for purposes of tile compar isons ,  and 
entries m the table under the heading rms. The latter entries are the root- 
mean-square  percentage deviations between the measured data points and 
theory. Approximately ,  these deviations express the smaller of density error 
or pressure error  at each data  point: more  precisely, each deviation is the 
distance of closest approach  of the theory to the measured data point, 
computed  fl-om percentage erro,'s evaluated separately lbr pressure and 
density predictions at the given temperaturc.  

Table I summarizes  results obta ined for several other  gases by adjust- 
ing the three constants  c, I'~, and l ' t : .  The gases include argon, methane,  
ethane, shown in Fig. 3, and n-pentane,  considered previously {see Fig. 3 in 
Ref. 3}. For  argon, results obta ined here are a little, though not greatly, 
better than were obtained in an earlier investigation of argon using a soft- 
sphere model and adjusting, rather  than I'~ and l't2, instead two constants  
associated with modifications of the third and fourth virials in that model. 
[See Ref 2, especially Figs. lc and ld, and the s ta tement  made in Rel: 2 in 
the next to bo t tom line on p. 62. ] Results obta ined for argon using the pre- 
sent model in the simpler approx imat ion  of hard spheres with temperature-  
independent  core volumes and no high virial correction I I'~ = l'z: = 0 )  so 
only the single constant  c = c o h e s i o n  volume is adjusted {to make  the 
theory give the correct pressure at the critical point)  are very nearly the 
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Fig. 2. Pressure isothcrnls for H.. Tenlperalures T, = 1.668. 1.516. 
1.395. 1.274, 1.152, 1.061, I.I)()l. 0.9711, (1.910, (I.849. Experimental 
data from Ref. 6. 
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Fig. 3. Presst, re isotherms for ethane. Temperatures 7",=1.713. 
1.632+ 1.550. 1.468, 1.386, 1.304, 1.222. 1.140, 1.058. 0.976. 0.895. 
Experimental data from Ref. 7. 

same as shown previously in Ref. 4 and in Figs. 1-6 of Ref. 1 for generic 
"simple" fluids treated in that approximation. In that approximation, the 
agreement for argon and the other simple fluids is found to be good for a 
somewhat wider range of temperatures than for H,  but for a similar range 
of densities--i.e., out to about 170% of critical. 

3. MICROSCOPIC M O D E L I N G  

An important goal of the present research is to be able to predict 
thermal behavior of fluids, including near the critical point, from a charac- 
terization of the underlying microscopic intermolecular interactions. As 
steps in that direction, it is of interest to see how well (or badly) some 
simple microscopic models predict the observed critical point properties 
and to investigate how the parameter values in a particular model needed 
to give correct critical point properties when used in the present theory 
vary among the different fluids studied. 

Consider first argon. The two-parameter, Lennard-Jones model does 
not work especially well lbr argon. But various three-parameter models are 
capable of predicting exactly the critical point temperature, density, and 
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Table Ii. Square-Well 
P. I', T When 

Parameters That Give Correct Critical Point 
Employed in the Theory Used Here 
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Gas a l A I  r.k (KI R 

~He 3.19 1.53 1.92 
H. 3.03 15.9 1.90 
Ar 3.23 97.1 1.75 
CH.~ 3.55 138 1.70 
C., H.  4.05 264 1.63 
n- Pentanc 5.21 598 1.49 

pressure when employed in the present theory. One example is a model 
potential that is Lennard-Jones from r =  ~ to the minimum, -~:, at 
r =  2 ~ %', then constant, equal to - , : ,  until r = tr i < a, and thereafter infinite 
for all smaller r. The argon critical point is predicted correctly by the 
present theory using this model if o '=3 .508A,  e /kB=II7 .6K,  and 
ai = 3.227 A. The values for c~ and eft,- differ not greatly from Lennard-Jones 
values obtained by fitting to the temperature dependence of the second 
virial coefficient suggested in Ref. 8 {a=3.405,  e / k = l i 9 . 8 1  or more 
recently [9]  Io" = 3.504, eft,- = 117.7J or (o" = 3.400, ~:/k = 116.801 obtained in 
a somewhat different way [ 10]. Using a square-well model l infinite poten- 
tial for r < a ,  -~: for a < r <  Ro-, and zero for all larger rl, the argon critical 
point is predicted correctly by using in the present theory o-= 3.227 A, 
e/k=97.1 K, R =  1.75. Investigations of the second virial coefficient of 
argon have resulted in proposed square-well model parameters Itr, ,:/k, RI 
equal to [8]  I3.162 A, 69.4 K, 1.85) and [9]  {3.067 A, 93.3 K, 1.70). There 
is serious disagreement between the present values and those noted in 
Ref. 8, but agreement to within -~ 5 % with the parameter values proposed 
in Ref. 9. In Table II the square-well parameter  values found in the same 
way as for argon are listed for all of the gases considered here. 

4. DISCUSSION 

The recently developed global renormalization-group theory for fluids 
[3]  has been applied in simple approximation to several different gases 
whose compressibility ratio Z =  PV/RT  at the critical point ranges from 
slightly higher than 0.30 (3He and H_,I to 0.26 (n-pentane) and whose 
Pitzer acentric factor ranges from -0 .47  to +0.25. For these gases the 
agreement between predicted and measured pressures near the critical 
point and densities elsewhere averages approximately 1% for a reasonably 
wide range of densities and temperatures [roughly (0.2-2.4lp~ and 
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(0.85-1.7) T~, for pressure to ~ 10PC]. The theory is capable of predicting 
critical point pressure, temperature, and density from a characterization of 
the underlying intermolecular interactions. To illustrate, square-well model 
parameters were quoted which, when used in the present theory, yield the 
experimentally observed critical point properties for each of the gases 
considered. 
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